4
ASAA
Costa RF, Rosas EP, Oliveira DA, Valença MM
Use of capsaicin as a model in the study of migraine: a literature review
2012;13(2):103-111 Doi: https://www.doi.org/10.1007/
s10194-011-0408-3
4. H. E. Boran and H. Bolay. Pathophysiology of Migraine.
Noro
Psikiyatr Ars
2013;50(Suppl 1):S1-s7 Doi: https://www.doi.
org/10.4274/Npa.y7251
5. S. E. Erdener and T. Dalkara. Modelling headache and
migraine and its pharmacological manipulation. B
r J Phar-
macol
2014;171(20):4575-4594 Doi: https://www.doi.
org/10.1111/bph.12651
6. H. Dong, X. Zhang and Y. Qian. Mast cells and neuroinflam-
mation.
Med Sci Monit Basic Res
2014;20(1):200-206 Doi:
https://www.doi.org/10.12659/msmbr.893093
7. A. C. Rosa and R. Fantozzi. The role of histamine in neurogenic
inflammation.
Br J Pharmacol
2013;170(1):38-45 Doi: https://
www.doi.org/10.1111/bph.12266
8. K. B. Alstadhaug. Histamine in migraine and brain.
Headache
2014;54(2):246-259 Doi: https://www.doi.org/10.1111/
head.12293
9. T. C. Theoharides, J. Donelan, K. Kandere-Grzybowska and A.
Konstantinidou. The role of mast cells in migraine pathophysiol-
ogy.
Brain Res Brain Res Rev
2005;49(1):65-76 Doi: https://
www.doi.org/10.1016/j.brainresrev.2004.11.006
10. A. F. Russo and I. M. Dickerson. CGRP: a Multifunctional Neu-
ropeptide. In: A. Lajtha and R. Lim, editors. Handbook of Neu-
rochemistry and Molecular Neurobiology: Neuroactive Proteins
and Peptides. Boston, MA: Springer US; 2006. p. 391-426.
11. N. Schwenger, M. Dux, R. de Col, R. Carr and K. Messling-
er. Interaction of calcitonin gene-related peptide, nitric ox-
ide and histamine release in neurogenic blood flow and af-
ferent activation in the rat cranial dura mater.
Cephalalgia
2007;27(6):481-491 Doi: https://www.doi.org/10.1111/
j.1468-2982.2007.01321.x
12. J. K. Lennerz, V. Rühle, E. P. Ceppa, W. L. Neuhuber, N. W.
Bunnett, E. F. Grady and K. Messlinger. Calcitonin receptor-like
receptor (CLR), receptor activity-modifying protein 1 (RAMP1),
and calcitonin gene-related peptide (CGRP) immunoreactiv-
ity in the rat trigeminovascular system: differences between
peripheral and central CGRP receptor distribution.
J Comp
Neurol
2008;507(3):1277-1299 Doi: https://www.doi.
org/10.1002/cne.21607
13. L. Edvinsson. Sensory nerves in man and their role in primary
headaches.
Cephalalgia
2001;21(7):761-764 Doi: https://
www.doi.org/10.1177/033310240102100705
14. N. Suzuki, Y. Fukuuchi, A. Koto, Y. Naganuma, K. Isozumi,
S. Konno, J. Gotoh and T. Shimizu. Distribution and origins
of cerebrovascular NADPH-diaphorase-containing nerve
fibers in the rat.
Journal of the Autonomic Nervous System
1994;49(Suppl): 51-54 Doi: https://doi.org/10.1016/0165-
1838(94)90086-8
15. F. Tore, O. T. Korkmaz, D. Dogrukol-Ak and N. Tunçel. The ef-
fects of vasoactive intestinal peptide on dura mater nitric oxide
levels and vessel-contraction responses in sympathectomized
rats.
J Mol Neurosci
2010;41(2):288-293 Doi: https://www.
doi.org/10.1007/s12031-009-9310-8
16. E. Kilinc, T. Firat, F. Tore, A. Kiyan, A. Kukner and N. Tunçel.
Vasoactive Intestinal peptide modulates c-Fos activity in the tri-
geminal nucleus and dura mater mast cells in sympathectomized
rats.
J Neurosci Res
2015;93(4):644-650 Doi: https://www.
doi.org/10.1002/jnr.23523
17. D. Koyuncu Irmak, E. Kilinc and F. Tore. Shared Fate of Meninge-
al Mast Cells and Sensory Neurons in Migraine.
Front Cell Neu-
rosci
2019;13(1):136 Doi: https://www.doi.org/10.3389/
fncel.2019.00136
18. J. Donnerer and R. Amann. Capsaicin-evoked neuropeptide
release is not dependent on membrane potential changes.
Neurosci Lett
1990;117(3):331-334 Doi: https://www.doi.
org/10.1016/0304-3940(90)90686-4
19. M. J. Caterina, M. A. Schumacher, M. Tominaga, T. A. Rosen, J.
D. Levine and D. Julius. The capsaicin receptor: a heat-activated
ion channel in the pain pathway.
Nature
1997;389(6653):816-
824 Doi: https://www.doi.org/10.1038/39807
20. M. Tominaga, M. J. Caterina, A. B. Malmberg, T. A. Rosen, H.
Gilbert, K. Skinner, B. E. Raumann, A. I. Basbaum and D. Julius.
The cloned capsaicin receptor integrates multiple pain-producing
stimuli.
Neuron
1998;21(3):531-543 Doi: https://www.doi.
org/10.1016/s0896-6273(00)80564-4
21. L. K. Singh, X. Pang, N. Alexacos, R. Letourneau and T. C.
Theoharides. Acute immobilization stress triggers skin mast cell
degranulation via corticotropin releasing hormone, neurotensin,
and substance P: A link to neurogenic skin disorders.
Brain
Behav Immun
1999;13(3):225-239 Doi: https://www.doi.
org/10.1006/brbi.1998.0541
22. R. L. Baylie and J. E. Brayden. TRPV channels and vascular
function.
Acta Physiol (Oxf)
2011;203(1):99-116 Doi: https://
www.doi.org/10.1111/j.1748-1716.2010.02217.x
23. J. J. C. s. Szolcsanyi. Capsaicin, irritation, and desensitization:
neurophysiological basis and future perspectives. 1990;2(141-
168
24. M. Dux, C. Will, B. Vogler, M. R. Filipovic and K. Messlinger.
Meningeal blood flow is controlled by H2 S-NO crosstalk acti-
vating a HNO-TRPA1-CGRP signalling pathway.
Br J Pharmacol
2016;173(3):431-445 Doi: https://www.doi.org/10.1111/
bph.13164
25. M. N. Sullivan, A. L. Gonzales, P. W. Pires, A. Bruhl, M. D. Leo,
W. Li, A. Oulidi, F. A. Boop, Y. Feng, J. H. Jaggar, D. G. Welsh
and S. Earley. Localized TRPA1 channel Ca2+ signals stimulated
by reactive oxygen species promote cerebral artery dilation.
Sci
Signal
2015;8(358):ra2 Doi: https://www.doi.org/10.1126/
scisignal.2005659
26. T. C. Theoharides, C. Spanos, X. Pang, L. Alferes, K. Ligris,
R. Letourneau, J. J. Rozniecki, E. Webster and G. P. Chrou-
sos. Stress-induced intracranial mast cell degranulation: a
corticotropin-releasing hormone-mediated effect.
Endocri-