Use of capsaicin as a model in the study of migraine: a literature review
Use of capsaicin as a model in the study of migraine: a literature review
DOI:
https://doi.org/10.37085/jmmv3.n1.2021.pp.1-5Keywords:
Migraine, Capsaicin, PathophysiologyAbstract
Capsaicin is able to induce mast cell degranulation, an event probably related to the pathophysiology
of a migraine attack. The present review study aimed to address the mechanisms of action of capsaicin and other chemical inducers in mast cell degranulation and an interaction of nerves and events that happen in the dura mater with the activation of mast cells. A survey was carried out in the literature, from 1980 to 2019, in different databases, using the following terms: capsaicin, mast cell and dura mater. 36 articles were selected for this review. Studies indicate that the main mechanisms of action of capsaicin are chemical induction through the activation of TRPV1 channels,
allowing calcium influx into neurons in the trigeminal ganglion of the dura mater, activating mast cell degranulation, releasing pro-inflammatory (e.g., histamine, oxide nitric) and vasoactive (e.g., CGRP and substance P) substances. Therefore, the use of capsaicin may be a tool to be used in an animal model to better understand the pathophysiology of migraine.
Downloads
References
G. Barbara, V. Stanghellini, R. De Giorgio, C. Cremon, G. S. Cottrell, D. Santini, G. Pasquinelli, A. M. Morselli-Labate, E. F. Grady, N. W. Bunnett, S. M. Collins and R. Corinaldesi. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 2004;126(3):693-702 Doi: https://www.doi.org/10.1053/j.gastro.2003.11.055
F. L. Rice, J. Y. Xie, P. J. Albrecht, E. Acker, J. Bourgeois, E. Navratilova, D. W. Dodick and F. Porreca. Anatomy and immunochemical characterization of the non-arterial peptidergic diffuse dural innervation of the rat and Rhesus monkey: Implications for functional regulation and treatment in migraine. Cephalalgia 2017;37(14):1350-1372 Doi: https://www.doi.org/10.1177/0333102416677051
P. Geppetti, E. Rossi, A. Chiarugi and S. Benemei. Antidromic vasodilatation and the migraine mechanism. J Headache Pain 2012;13(2):103-111 Doi: https://www.doi.org/10.1007/s10194-011-0408-3
H. E. Boran and H. Bolay. Pathophysiology of Migraine. Noro Psikiyatr Ars 2013;50(Suppl 1):S1-s7 Doi: https://www.doi.org/10.4274/Npa.y7251
S. E. Erdener and T. Dalkara. Modelling headache and migraine and its pharmacological manipulation. Br J Pharmacol 2014;171(20):4575-4594 Doi: https://www.doi.org/10.1111/bph.12651
H. Dong, X. Zhang and Y. Qian. Mast cells and neuroinflammation. Med Sci Monit Basic Res 2014;20(1):200-206 Doi: https://www.doi.org/10.12659/msmbr.893093
A. C. Rosa and R. Fantozzi. The role of histamine in neurogenic inflammation. Br J Pharmacol 2013;170(1):38-45 Doi: https://www.doi.org/10.1111/bph.12266
K. B. Alstadhaug. Histamine in migraine and brain. Headache 2014;54(2):246-259 Doi: https://www.doi.org/10.1111/head.12293
T. C. Theoharides, J. Donelan, K. Kandere-Grzybowska and A. Konstantinidou. The role of mast cells in migraine pathophysiology. Brain Res Brain Res Rev 2005;49(1):65-76 Doi: https://www.doi.org/10.1016/j.brainresrev.2004.11.006
A. F. Russo and I. M. Dickerson. CGRP: a Multifunctional Neuropeptide. In: A. Lajtha and R. Lim, editors. Handbook of Neurochemistry and Molecular Neurobiology: Neuroactive Proteins and Peptides. Boston, MA: Springer US; 2006. p. 391-426.
N. Schwenger, M. Dux, R. de Col, R. Carr and K. Messlinger. Interaction of calcitonin gene-related peptide, nitric oxide and histamine release in neurogenic blood flow and afferent activation in the rat cranial dura mater. Cephalalgia 2007;27(6):481-491 Doi: https://www.doi.org/10.1111/j.1468-2982.2007.01321.x
J. K. Lennerz, V. Rühle, E. P. Ceppa, W. L. Neuhuber, N. W. Bunnett, E. F. Grady and K. Messlinger. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution. J Comp Neurol 2008;507(3):1277-1299 Doi: https://www.doi.org/10.1002/cne.21607
L. Edvinsson. Sensory nerves in man and their role in primary headaches. Cephalalgia 2001;21(7):761-764 Doi: https://www.doi.org/10.1177/033310240102100705
N. Suzuki, Y. Fukuuchi, A. Koto, Y. Naganuma, K. Isozumi, S. Konno, J. Gotoh and T. Shimizu. Distribution and origins of cerebrovascular NADPH-diaphorase-containing nerve fibers in the rat. Journal of the Autonomic Nervous System 1994;49(Suppl): 51-54 Doi: https://doi.org/10.1016/0165-1838(94)90086-8
F. Tore, O. T. Korkmaz, D. Dogrukol-Ak and N. Tunçel. The effects of vasoactive intestinal peptide on dura mater nitric oxide levels and vessel-contraction responses in sympathectomized rats. J Mol Neurosci 2010;41(2):288-293 Doi: https://www.doi.org/10.1007/s12031-009-9310-8
E. Kilinc, T. Firat, F. Tore, A. Kiyan, A. Kukner and N. Tunçel. Vasoactive Intestinal peptide modulates c-Fos activity in the trigeminal nucleus and dura mater mast cells in sympathectomized rats. J Neurosci Res 2015;93(4):644-650 Doi: https://www.doi.org/10.1002/jnr.23523
D. Koyuncu Irmak, E. Kilinc and F. Tore. Shared Fate of Meningeal Mast Cells and Sensory Neurons in Migraine. Front Cell Neurosci 2019;13(1):136 Doi: https://www.doi.org/10.3389/fncel.2019.00136
J. Donnerer and R. Amann. Capsaicin-evoked neuropeptide release is not dependent on membrane potential changes. Neurosci Lett 1990;117(3):331-334 Doi: https://www.doi.org/10.1016/0304-3940(90)90686-4
M. J. Caterina, M. A. Schumacher, M. Tominaga, T. A. Rosen, J. D. Levine and D. Julius. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 1997;389(6653):816-824 Doi: https://www.doi.org/10.1038/39807
M. Tominaga, M. J. Caterina, A. B. Malmberg, T. A. Rosen, H. Gilbert, K. Skinner, B. E. Raumann, A. I. Basbaum and D. Julius. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 1998;21(3):531-543 Doi: https://www.doi.org/10.1016/s0896-6273(00)80564-4
L. K. Singh, X. Pang, N. Alexacos, R. Letourneau and T. C. Theoharides. Acute immobilization stress triggers skin mast cell degranulation via corticotropin releasing hormone, neurotensin, and substance P: A link to neurogenic skin disorders. Brain Behav Immun 1999;13(3):225-239 Doi: https://www.doi.org/10.1006/brbi.1998.0541
R. L. Baylie and J. E. Brayden. TRPV channels and vascular function. Acta Physiol (Oxf) 2011;203(1):99-116 Doi: https://www.doi.org/10.1111/j.1748-1716.2010.02217.x
J. J. C. s. Szolcsanyi. Capsaicin, irritation, and desensitization: neurophysiological basis and future perspectives. 1990;2(141-168
M. Dux, C. Will, B. Vogler, M. R. Filipovic and K. Messlinger. Meningeal blood flow is controlled by H2 S-NO crosstalk activating a HNO-TRPA1-CGRP signalling pathway. Br J Pharmacol 2016;173(3):431-445 Doi: https://www.doi.org/10.1111/bph.13164
M. N. Sullivan, A. L. Gonzales, P. W. Pires, A. Bruhl, M. D. Leo, W. Li, A. Oulidi, F. A. Boop, Y. Feng, J. H. Jaggar, D. G. Welsh and S. Earley. Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation. Sci Signal 2015;8(358):ra2 Doi: https://www.doi.org/10.1126/scisignal.2005659
T. C. Theoharides, C. Spanos, X. Pang, L. Alferes, K. Ligris, R. Letourneau, J. J. Rozniecki, E. Webster and G. P. Chrousos. Stress-induced intracranial mast cell degranulation: a corticotropin-releasing hormone-mediated effect. Endocrinology 1995;136(12):5745-5750 Doi: https://www.doi.org/10.1210/endo.136.12.7588332
P. Huang, P. H. Kuo, M. T. Lee, L. C. Chiou and P. C. Fan. Age-Dependent Anti-migraine Effects of Valproic Acid and Topiramate in Rats. Front Pharmacol 2018;9(1):1095 Doi: https://www.doi.org/10.3389/fphar.2018.01095
V. Dimitriadou, M. G. Buzzi, M. A. Moskowitz and T. C. Theoharides. Trigeminal sensory fiber stimulation induces morphological changes reflecting secretion in rat dura mater mast cells. Neuroscience 1991;44(1):97-112 Doi: https://www.doi.org/10.1016/0306-4522(91)90253-k
V. Dimitriadou, A. Rouleau, M. D. Trung Tuong, G. J. Newlands, H. R. Miller, G. Luffau, J. C. Schwartz and M. Garbarg. Functional relationships between sensory nerve fibers and mast cells of dura mater in normal and inflammatory conditions. Neuroscience 1997;77(3):829-839 Doi: https://www.doi.org/10.1016/s0306-4522(96)00488-5
I. Shelukhina, N. Mikhailov, P. Abushik, L. Nurullin, E. E. Nikolsky and R. Giniatullin. Cholinergic Nociceptive Mechanisms in Rat Meninges and Trigeminal Ganglia: Potential Implications for Migraine Pain. Front Neurol 2017;8(1):163 Doi: https://www.doi.org/10.3389/fneur.2017.00163
J. Cheng, X. N. Yang, X. Liu and S. P. Zhang. Capsaicin for allergic rhinitis in adults. Cochrane Database Syst Rev 2006;2(1):Cd004460 Doi: https://www.doi.org/10.1002/14651858.CD004460.pub2
S. Frydas, G. Varvara, G. Murmura, A. Saggini, A. Caraffa, P. Antinolfi, S. Tete, D. Tripodi, F. Conti, E. Cianchetti, E. Toniato, M. Rosati, L. Speranza, A. Pantalone, R. Saggini, L. M. Di Tommaso, T. C. Theoharides, P. Conti and F. Pandolfi. Impact of capsaicin on mast cell inflammation. Int J Immunopathol Pharmacol 2013;26(3):597-600 Doi: https://www.doi.org/10.1177/039463201302600303
D. Levy, V. Kainz, R. Burstein and A. M. Strassman. Mast cell degranulation distinctly activates trigemino-cervical and lumbosacral pain pathways and elicits widespread tactile pain hypersensitivity. Brain Behav Immun 2012;26(2):311-317 Doi: https://www.doi.org/10.1016/j.bbi.2011.09.016
J. Wallengren and R. Håkanson. Effects of substance P, neurokinin A and calcitonin gene-related peptide in human skin and their involvement in sensory nerve-mediated responses. Eur J Pharmacol 1987;143(2):267-273 Doi: https://www.doi.org/10.1016/0014-2999(87)90542-5
T. Boes and D. Levy. Influence of sex, estrous cycle, and estrogen on intracranial dural mast cells. Cephalalgia 2012;32(12):924-931 Doi: https://www.doi.org/10.1177/0333102412454947
M. Baun, M. H. Pedersen, J. Olesen and I. Jansen-Olesen. Dural mast cell degranulation is a putative mechanism for headache induced by PACAP-38. Cephalalgia 2012;32(4):337-345 Doi: https://www.doi.org/10.1177/0333102412439354
Published
How to Cite
License
Os direitos autorais para artigos publicados no Jornal Memorial da Medicina são do autor, com direitos de primeira publicação para a revista. Em virtude de aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não comerciais. O Jornal Memorial da Medcina permitirá o uso dos trabalhos publicados para fins não comerciais, incluindo direito de enviar o trabalho para bases de dados de acesso público. Os artigos publicados são de total e exclusiva responsabilidade dos autores. Há encargos para submissão no processamento de artigos (Articles Processing Charge - APC).